The vanishing of anticyclotomic μ -invariants for non-ordinary modular forms

Let $K$ be an imaginary quadratic field where $p$ splits. We study signed Selmer groups for non-ordinary modular forms over the anticyclotomic $\mathbb{Z}_p$-extension of $K$, showing that one inclusion of an Iwasawa main conjecture involving the $p$-adic $L$-function of Bertolini–Darmon–Prasanna im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comptes rendus. Mathématique 2023, Vol.361 (G1), p.65-72
Hauptverfasser: Hatley, Jeffrey, Lei, Antonio
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $K$ be an imaginary quadratic field where $p$ splits. We study signed Selmer groups for non-ordinary modular forms over the anticyclotomic $\mathbb{Z}_p$-extension of $K$, showing that one inclusion of an Iwasawa main conjecture involving the $p$-adic $L$-function of Bertolini–Darmon–Prasanna implies that their $\mu $-invariants vanish. This gives an alternative method to reprove a recent result of Matar on the vanishing of the $\mu $-invariants of plus and minus signed Selmer groups for elliptic curves.
ISSN:1778-3569
1778-3569
DOI:10.5802/crmath.389