The vanishing of anticyclotomic μ -invariants for non-ordinary modular forms
Let $K$ be an imaginary quadratic field where $p$ splits. We study signed Selmer groups for non-ordinary modular forms over the anticyclotomic $\mathbb{Z}_p$-extension of $K$, showing that one inclusion of an Iwasawa main conjecture involving the $p$-adic $L$-function of Bertolini–Darmon–Prasanna im...
Gespeichert in:
Veröffentlicht in: | Comptes rendus. Mathématique 2023, Vol.361 (G1), p.65-72 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $K$ be an imaginary quadratic field where $p$ splits. We study signed Selmer groups for non-ordinary modular forms over the anticyclotomic $\mathbb{Z}_p$-extension of $K$, showing that one inclusion of an Iwasawa main conjecture involving the $p$-adic $L$-function of Bertolini–Darmon–Prasanna implies that their $\mu $-invariants vanish. This gives an alternative method to reprove a recent result of Matar on the vanishing of the $\mu $-invariants of plus and minus signed Selmer groups for elliptic curves. |
---|---|
ISSN: | 1778-3569 1778-3569 |
DOI: | 10.5802/crmath.389 |