The Influence of Reduced Frequency on H-VAWT Aerodynamic Performance and Flow Field Near Blades

Studies demonstrate that the reduced frequency k is influenced by the incoming wind speed U0 and the rotor speed n. As a dimensionless parameter, k characterizes the stability of the flow field, which is a critical factor affecting the performance of vertical-axis wind turbines (VAWTs). This paper i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2024-09, Vol.17 (18), p.4760
Hauptverfasser: Yue, Nianxi, Yang, Congxin, Li, Shoutu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Studies demonstrate that the reduced frequency k is influenced by the incoming wind speed U0 and the rotor speed n. As a dimensionless parameter, k characterizes the stability of the flow field, which is a critical factor affecting the performance of vertical-axis wind turbines (VAWTs). This paper investigates the impact of k on the performance of straight-blade vertical-axis wind turbines (H-VAWT). The findings indicate that 0.05 is the critical value of k. The same k results in a similar flow field structure, yet the performance changes vary with different U0. A decrease in n or an increase in U0 leads to an increase in the average value and fluctuation of k, which subsequently reduces the rotor rotation torque Cm and decreases the maximum wind energy utilization rate Cpmax. This reduction in Cpmax weakens the stability of the flow field. Additionally, the high-speed area of the blade’s trailing edge velocity trajectory at θ=0°, θ=120°, and θ=240° expands with increasing range. Velocity dissipation in the high-speed area of the trailing edge affects the stability of the flow field within the rotor.
ISSN:1996-1073
1996-1073
DOI:10.3390/en17184760