Uncoupled respiration stability of isolated pancreatic acini as a novel functional test for cell vitality

Background. Assessment of cell viability is crucial in cell studies. Testing plasma membrane integrity is a traditional approach of evaluating cell viability. Mitochondrial functional capacity closely correlates with plasma membrane integrity and overall cell health. This study aimed to investigate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bìologìčnì studìï 2023-09, Vol.17 (3), p.243-252
Hauptverfasser: Zub, Anastasiia, Manko, Bohdan V., Manko, Bohdan O., Manko, Volodymyr, Babsky, Andriy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background. Assessment of cell viability is crucial in cell studies. Testing plasma membrane integrity is a traditional approach of evaluating cell viability. Mitochondrial functional capacity closely correlates with plasma membrane integrity and overall cell health. This study aimed to investigate whether any aspect of mitochondrial adaptive capacity in isolated pancreatic acini is associated with the quality of isolated pancreatic acini preparations, as determined by the dye exclusion method. Materials and Methods. Experiments were carried out on male Wistar rats weig­hing 250–300 g. A suspension of isolated pancreatic acini was obtained using collagenase. The rate of oxygen consumption of rat isolated pancreatic acini was measured with Clark oxygen electrode. Basal respiration of isolated pancreatic acini was recorded for approximately 2 min. Afterwards, the mitochondrial adaptive capacity was examined using FCCP in concentrations from 0.5 to 2 μM. Uncoupled respiratory stability was calculated as a ratio of respiration rate at high and low FCCP concentrations. Plasma membrane integrity was assessed with trypan blue staining. A total of 74 preparations of isolated pancreatic acini were used in this study. Results. In all experiments, 92–99 % of pancreatic acinar cells exhibited negative trypan blue staining, indicating intact plasma membranes. The basal and maximal uncoupled respiration rates were not affected by the fraction of trypan-negative cells. However, acini preparations with
ISSN:1996-4536
2311-0783
DOI:10.30970/sbi.1703.735