Experimental Investigation on the Reaction Characteristics between Ozone and Vehicle Cabin/Furniture Materials

Volatile organic compounds (VOCs) emitted from building and vehicle cabin materials seriously affect indoor and in-cabin air quality, as well as human health. Previous studies revealed that some VOCs from building materials could react with ozone to affect the concentration levels of the indoor envi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmosphere 2023-04, Vol.14 (5), p.769
Hauptverfasser: Gao, Ying, Zhang, Meixia, Wang, Haimei, Xiong, Jianyin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Volatile organic compounds (VOCs) emitted from building and vehicle cabin materials seriously affect indoor and in-cabin air quality, as well as human health. Previous studies revealed that some VOCs from building materials could react with ozone to affect the concentration levels of the indoor environment, but seldom refers to vehicle cabin materials. In this study, we performed experimental investigation for two kinds of vehicle cabin materials (car carpet, sealing strip) and one furniture material (medium-density fiberboard) by conducting small-scale chamber tests under two different conditions, with ozone (about 110 μg/m3) and without ozone (about 10 μg/m3), to explore the effect of in-cabin chemistry on VOC emissions. We observed the VOC concentration changes in the two scenarios and found that ozone had a significant impact on the concentrations of aldehydes and ketones while having little impact on the concentrations of benzene series. We introduced a gain ratio to quantitatively reflect the concentration changes in the presence of ozone. The gain ratio for aldehydes and ketones is greater than one, while that for the benzene series is basically around one with a small fluctuation range. This study demonstrates that ozone can react with VOCs containing unsaturated carbon–carbon bonds or carbon–oxygen bonds emitted from varied materials to produce aldehydes and ketones, which will further reduce indoor and in-cabin air quality.
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos14050769