Francisella FlmX broadly affects lipopolysaccharide modification and virulence

The outer membrane protects Gram-negative bacteria from the host environment. Lipopolysaccharide (LPS), a major outer membrane constituent, has distinct components (lipid A, core, O-antigen) generated by specialized pathways. In this study, we describe the surprising convergence of these pathways th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell reports (Cambridge) 2021-06, Vol.35 (11), p.109247, Article 109247
Hauptverfasser: Chin, Chui-Yoke, Zhao, Jinshi, Llewellyn, Anna C, Golovliov, Igor, Sjöstedt, Anders, Zhou, Pei, Weiss, David S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The outer membrane protects Gram-negative bacteria from the host environment. Lipopolysaccharide (LPS), a major outer membrane constituent, has distinct components (lipid A, core, O-antigen) generated by specialized pathways. In this study, we describe the surprising convergence of these pathways through FlmX, an uncharacterized protein in the intracellular pathogen Francisella. FlmX is in the flippase family, which includes proteins that traffic lipid-linked envelope components across membranes. flmX deficiency causes defects in lipid A modification, core remodeling, and O-antigen addition. We find that an F. tularensis mutant lacking flmX is >1,000,000-fold attenuated. Furthermore, FlmX is required to resist the innate antimicrobial LL-37 and the antibiotic polymyxin. Given FlmX's central role in LPS modification and its conservation in intracellular pathogens Brucella, Coxiella, and Legionella, FlmX may represent a novel drug target whose inhibition could cripple bacterial virulence and sensitize bacteria to innate antimicrobials and antibiotics.
ISSN:2211-1247
2211-1247
DOI:10.1016/j.celrep.2021.109247