Edge Irregular Reflexive Labeling for the Disjoint Union of Gear Graphs and Prism Graphs
In graph theory, a graph is given names—generally a whole number—to edges, vertices, or both in a chart. Formally, given a graph G = ( V , E ) , a vertex naming is a capacity from V to an arrangement of marks. A diagram with such a capacity characterized defined is known as a vertex-marked graph. Si...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2018-09, Vol.6 (9), p.142 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In graph theory, a graph is given names—generally a whole number—to edges, vertices, or both in a chart. Formally, given a graph G = ( V , E ) , a vertex naming is a capacity from V to an arrangement of marks. A diagram with such a capacity characterized defined is known as a vertex-marked graph. Similarly, an edge naming is a mapping of an element of E to an arrangement of marks. In this case, the diagram is called an edge-marked graph. We consider an edge irregular reflexive k-labeling for the disjoint association of wheel-related diagrams and deduce the correct estimation of the reflexive edge strength for the disjoint association of m copies of some wheel-related graphs, specifically gear graphs and prism graphs. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math6090142 |