Astrobiology eXploration at Enceladus (AXE): A New Frontiers Mission Concept Study

The Saturnian moon Enceladus presents a unique opportunity to sample the contents of a subsurface liquid water ocean in situ via the continuous plume formed over its south polar terrain using a multi-flyby mission architecture. Previous analyses of the plume’s composition by Cassini revealed an ener...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The planetary science journal 2023-06, Vol.4 (6), p.116
Hauptverfasser: Seaton, K. Marshall, Gyalay, Szilárd, Stucky de Quay, Gaia, Burnett, Ethan R., Denton, C. Adeene, Doerr, Bryce, Ebadi, Kamak, Eckert, Stephanie, Flynn, Ian. T. W., Honniball, Casey I., Hume, Shayna, Kling, Corbin L., Marohnic, Julian C., Milton, Julia, Mondro, Claire A., Nuno, Raquel G., Rooney, Caoimhe M., Strauss, Beck E., Nash, Alfred, Scully, Jennifer E. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Saturnian moon Enceladus presents a unique opportunity to sample the contents of a subsurface liquid water ocean in situ via the continuous plume formed over its south polar terrain using a multi-flyby mission architecture. Previous analyses of the plume’s composition by Cassini revealed an energy-rich system laden with salts and organic compounds, representing an environment containing most of the ingredients for life as we know it. Following in the footsteps of the Cassini-Huygens mission, we present Astrobiology eXploration at Enceladus (AXE), a New Frontiers class Enceladus mission concept study carried out during the 2021 NASA Planetary Science Summer School program at the Jet Propulsion Laboratory, California Institute of Technology. We demonstrate that a scientifically compelling geophysical and life-detection mission to Enceladus can be carried out within the constraints of a New Frontiers-5 cost cap using a modest instrument suite, requiring only a narrow angle, high-resolution telescopic imager, a mass spectrometer, and a high-gain antenna for radio communications and gravity science measurements. Using a multi-flyby mission architecture, AXE would evaluate the habitability and potential for life at Enceladus through a synergistic combination of in situ chemical analysis measurements aimed at directly detecting the presence of molecular biosignatures, along with geophysical and geomorphological investigations to contextualize chemical biosignatures and further evaluate the habitability of Enceladus over geologic time.
ISSN:2632-3338
2632-3338
DOI:10.3847/PSJ/acd119