Transparent and tough bulk composites inspired by nacre

Materials combining optical transparency and mechanical strength are highly demanded for electronic displays, structural windows and in the arts, but the oxide-based glasses currently used in most of these applications suffer from brittle fracture and low crack tolerance. We report a simple approach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-06, Vol.10 (1), p.2794-10, Article 2794
Hauptverfasser: Magrini, Tommaso, Bouville, Florian, Lauria, Alessandro, Le Ferrand, Hortense, Niebel, Tobias P., Studart, André R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Materials combining optical transparency and mechanical strength are highly demanded for electronic displays, structural windows and in the arts, but the oxide-based glasses currently used in most of these applications suffer from brittle fracture and low crack tolerance. We report a simple approach to fabricate bulk transparent materials with a nacre-like architecture that can effectively arrest the propagation of cracks during fracture. Mechanical characterization shows that our glass-based composites exceed up to a factor of 3 the fracture toughness of common glasses, while keeping flexural strengths comparable to transparent polymers, silica- and soda-lime glasses. Due to the presence of stiff reinforcing platelets, the hardness of the obtained composites is an order of magnitude higher than that of transparent polymers. By implementing biological design principles into glass-based materials at the microscale, our approach opens a promising new avenue for the manufacturing of structural materials combining antagonistic functional properties. Transparent materials with high strength and hardness coupled with low crack tolerance remain challenging to manufacture. Here, the authors develop a process to fabricate transparent but tough glass composites with a nacre-like architecture that slows crack propagation.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-10829-2