Thermal Management of Electronics to Avoid Fire Using Different Air Flow Strategies
Due to high heat generation within closely packed smart electronic devices, some efficient thermal management systems are required for their reliable performance, avoid overheating, long lifecycle and safety. In this study, a novel thermal management system based on forced air cooling having three a...
Gespeichert in:
Veröffentlicht in: | Fire (Basel, Switzerland) Switzerland), 2023-03, Vol.6 (3), p.87 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to high heat generation within closely packed smart electronic devices, some efficient thermal management systems are required for their reliable performance, avoid overheating, long lifecycle and safety. In this study, a novel thermal management system based on forced air cooling having three airflow configurations is developed to explore the thermal characteristics of each configuration. A customized cavity is designed to have provision for three airflow configurations (axial, cross, and reverse flow) and temperature profiles are investigated within the cavity for each configuration. The experiments are performed at three heat generation rates, i.e., 10 W, 20 W, and 30 W to analyze the cooling effectiveness at a variable heat generation rate. It was observed that the maximum temperature within the setup increases with the increase in heat generation rate. In axial flow air configuration, cavity temperature has been reduced remarkably by 69 and 82.4% at 10 W and 30 W, respectively. Second to axial flow, cross flow configuration performs better than reverse flow and an overall 65.7~78.6% temperature drop is obtained compared with enclosed cavity from 10 W to 30 W, respectively. Furthermore, a similar cooling rate trend in the cavity is obtained for an increased heat generation rate in the cavity. |
---|---|
ISSN: | 2571-6255 2571-6255 |
DOI: | 10.3390/fire6030087 |