Novel Fully Organic Water Oxidation Electrocatalysts: A Quest for Simplicity
Despite the growing need for readily available and inexpensive catalysts for the half-reactions involved in water splitting, water oxidation and reduction electrocatalysts are still traditionally based on noble metals. One long-standing challenge has been the development of an oxygen evolution react...
Gespeichert in:
Veröffentlicht in: | ACS omega 2018-03, Vol.3 (3), p.2602-2608 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Despite the growing need for readily available and inexpensive catalysts for the half-reactions involved in water splitting, water oxidation and reduction electrocatalysts are still traditionally based on noble metals. One long-standing challenge has been the development of an oxygen evolution reaction catalyzed by easily available, structurally simple, and purely organic compounds. Herein, we first generalize the performance of the known N-ethyl-flavinium ion to a number of derivatives. Furthermore, we demonstrate an unprecedented application of different pyridinium and related salts as very simple, inexpensive water oxidation organocatalysts consisting of earth-abundant elements (C, H, O, and N) exclusively. The results establish the prospects of heterocyclic aromatics for further design of new organic electrocatalysts for this challenging oxidation reaction. |
---|---|
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.7b01982 |