Recurrent Neural Network for Inertial Gait User Recognition in Smartphones

In this article, a gait recognition algorithm is presented based on the information obtained from inertial sensors embedded in a smartphone, in particular, the accelerometers and gyroscopes typically embedded on them. The algorithm processes the signal by extracting gait cycles, which are then fed i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2019-09, Vol.19 (18), p.4054
Hauptverfasser: Fernandez-Lopez, Pablo, Liu-Jimenez, Judith, Kiyokawa, Kiyoshi, Wu, Yang, Sanchez-Reillo, Raul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, a gait recognition algorithm is presented based on the information obtained from inertial sensors embedded in a smartphone, in particular, the accelerometers and gyroscopes typically embedded on them. The algorithm processes the signal by extracting gait cycles, which are then fed into a Recurrent Neural Network (RNN) to generate feature vectors. To optimize the accuracy of this algorithm, we apply a random grid hyperparameter selection process followed by a hand-tuning method to reach the final hyperparameter configuration. The different configurations are tested on a public database with 744 users and compared with other algorithms that were previously tested on the same database. After reaching the best-performing configuration for our algorithm, we obtain an equal error rate (EER) of 11.48% when training with only 20% of the users. Even better, when using 70% of the users for training, that value drops to 7.55%. The system manages to improve on state-of-the-art methods, but we believe the algorithm could reach a significantly better performance if it was trained with more visits per user. With a large enough database with several visits per user, the algorithm could improve substantially.
ISSN:1424-8220
1424-8220
DOI:10.3390/s19184054