Manganese-catalyzed cyclopropanation of allylic alcohols with sulfones

Cyclopropanes are among the most important structural units in natural products, pharmaceuticals, and agrochemicals. Herein, we report a manganese-catalyzed cyclopropanation of allylic alcohols with sulfones as carbene alternative precursors via a borrowing hydrogen strategy under mild conditions. V...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-08, Vol.15 (1), p.6798-8, Article 6798
Hauptverfasser: Yu, Ke, Nie, Qin, Chen, Qianjin, Liu, Weiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cyclopropanes are among the most important structural units in natural products, pharmaceuticals, and agrochemicals. Herein, we report a manganese-catalyzed cyclopropanation of allylic alcohols with sulfones as carbene alternative precursors via a borrowing hydrogen strategy under mild conditions. Various allylic alcohols and arylmethyl trifluoromethyl sulfones work efficiently in this borrowing hydrogen transformation and thereby deliver the corresponding cyclopropylmethanol products in 58% to 99% yields. Importantly, a major benefit of this transformation is that the versatile free alcohol moiety is retained in the resultant products, which can undergo a wide range of downstream transformations to provide access to a series of functional molecules. Mechanistic studies support a sequential reaction mechanism that involves catalytic dehydrogenation, Michael addition, cyclization, and catalytic hydrogenation. Developing readily available and bench-stable reagents for the cyclopropanation of olefins is needed as traditional methodologies mainly rely on carbene-based strategies. Herein, the authors report a manganese-catalyzed cyclopropanation of allylic alcohols with sulfones via a borrowing hydrogen strategy under mild conditions.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-51188-x