Reliability-Based Design Optimization for Polymer Electrolyte Membrane Fuel Cells: Tackling Dimensional Uncertainties in Manufacturing and Their Effects on Costs of Cathode Gas Diffusion Layer and Bipolar Plates
Polymer Electrolyte Membrane Fuel Cells (PEMFCs) have emerged as a pivotal technology in the automotive industry, significantly contributing to the reduction of greenhouse gas emissions. However, the high material costs of the gas diffusion layer (GDL) and bipolar plate (BP) create a barrier for lar...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2024-09, Vol.29 (18), p.4381 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Polymer Electrolyte Membrane Fuel Cells (PEMFCs) have emerged as a pivotal technology in the automotive industry, significantly contributing to the reduction of greenhouse gas emissions. However, the high material costs of the gas diffusion layer (GDL) and bipolar plate (BP) create a barrier for large scale commercial application. This study aims to address this challenge by optimizing the material and design of the cathode, GDL and BP. While deterministic design optimization (DDO) methods have been extensively studied, they often fall short when manufacturing uncertainties are introduced. This issue is addressed by introducing reliability-based design optimization (RBDO) to optimize four key PEMFC design variables, i.e., gas diffusion layer thickness, channel depth, channel width and land width. The objective is to maximize cell voltage considering the material cost of the cathode gas diffusion layer and cathode bipolar plate as reliability constraints. The results of the DDO show an increment in cell voltage of 31 mV, with a reliability of around 50% in material cost for both the cathode GDL and cathode BP. In contrast, the RBDO method provides a reliability of 95% for both components. Additionally, under a high level of uncertainty, the RBDO approach reduces the material cost of the cathode GDL by up to 12.25 $/stack, while the material cost for the cathode BP increases by up to 11.18 $/stack Under lower levels of manufacturing uncertainties, the RBDO method predicts a reduction in the material cost of the cathode GDL by up to 4.09 $/stack, with an increase in the material cost for the cathode BP by up to 6.71 $/stack, while maintaining a reliability of 95% for both components. These results demonstrate the effectiveness of the RBDO approach in achieving a reliable design under varying levels of manufacturing uncertainties. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules29184381 |