Catanionic Surfactant Systems for Emulsifying and Viscosity Reduction of Shale Oil
Shale oil resources are abundant in the second member of the Kongdian Formation, Cangdong Sag, Bohai Bay Basin, China. However, the shale oil here has high viscosity and poor fluidity, resulting in low recovery and huge difficulty in development, gathering, and transporting. This study assembled a c...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2024-11, Vol.17 (22), p.5780 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Shale oil resources are abundant in the second member of the Kongdian Formation, Cangdong Sag, Bohai Bay Basin, China. However, the shale oil here has high viscosity and poor fluidity, resulting in low recovery and huge difficulty in development, gathering, and transporting. This study assembled a catanionic surfactant (PSG) through electrostatic interactions between cetyltrimethylammonium bromide (CTAB) and α-olefin sulfonate (AOS) in an aqueous phase, which can be used as an effective emulsifying and viscosity-reducing agents for shale oils of Dagang oilfield. The interfacial activity and emulsification performance of PSG can be optimized by changing the molar ratio of CTAB to AOS. Notably, the PSG assembled at the molar ratio of 6:4 shows the best performance, with ultra-high surface activity and excellent salt resistance. At an oil/water ratio of 1:1 and 50 °C, an aqueous solution of 0.2% PSG can emulsify five types of shale oil, making it form shale oil-in-water (O/W) emulsion with a viscosity of less than 35 mPa·s, thereby reducing the viscosity of shale oil and improving its flowability. Importantly, shale oil and water can be separated by simple sedimentation without adding demulsifiers. This study has important guiding significance for the efficient development and transportation of shale oil. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en17225780 |