Hydrological connectivity controls dissolved organic carbon exports in a peatland-dominated boreal catchment stream

The magnitudes of dissolved organic carbon (DOC) exports from boreal peatlands to streams through lateral subsurface flow vary during the ice-free season. Peatland water table depth and the alternation of low and high flow in peat-draining streams are thought to drive this DOC export variability. Ho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrology and earth system sciences 2023-11, Vol.27 (21), p.3935-3955
Hauptverfasser: Prijac, Antonin, Gandois, Laure, Taillardat, Pierre, Bourgault, Marc-André, Riahi, Khawla, Ponçot, Alex, Tremblay, Alain, Garneau, Michelle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The magnitudes of dissolved organic carbon (DOC) exports from boreal peatlands to streams through lateral subsurface flow vary during the ice-free season. Peatland water table depth and the alternation of low and high flow in peat-draining streams are thought to drive this DOC export variability. However, calculation of the specific DOC exports from a peatland can be challenging considering the multiple potential DOC sources within the catchment. A calculation approach based on the hydrological connectivity between the peat and the stream could help to solve this issue, which is the approach used in the present research. This study took place from June 2018 to October 2019 in a boreal catchment in northeastern Canada, with 76.7 % of the catchment being covered by ombrotrophic peatland. The objectives were to (1) establish relationships between DOC exports from a headwater stream and the peatland hydrology; (2) quantify, at the catchment scale, the amount of DOC laterally exported to the draining stream; and (3) define the patterns of DOC mobilization during high-river-flow events. At the peatland headwater stream outlet, the DOC concentrations were monitored at a high frequency (hourly) using a fluorescent dissolved organic matter (fDOM) sensor, a proxy for DOC concentration. Hydrological variables, such as stream outlet discharge and peatland water table depth (WTD), were continuously monitored at hourly intervals for 2 years. Our results highlight the direct and delayed control of subsurface flow from peat to the stream and associated DOC exports. Rain events raised the peatland WTD, which increased hydrological connectivity between the peatland and the stream. This led to increased stream discharge (Q) and a delayed DOC concentration increase, typical of lateral subsurface flow. The magnitude of the WTD increase played a crucial role in influencing the quantity of DOC exported. Based on the observations that the peatland is the most important contributor to DOC exports at the catchment scale and that other DOC sources were negligible during high-flow periods, we propose a new approach to estimate the specific DOC exports attributable to the peatland by distinguishing between the surfaces used for calculation during high-flow and low-flow periods. In 2018–2019, 92.6 % of DOC was exported during flood events despite the fact that these flood events accounted for 59.1 % of the period. In 2019–2020, 93.8 % of DOC was exported during flood events, which repr
ISSN:1607-7938
1027-5606
1607-7938
DOI:10.5194/hess-27-3935-2023