Assessing alternatives to HEPA air purification requirements to reduce viral pathogen transmission in healthcare HVAC systems
Background: High-efficiency particulate air (HEPA) filters are currently recommended when using recirculated air to eliminate the risk of pathogen transmission such as SARS-CoV-2 from one patient care area to the next. We tested the efficacy of lower-grade air filters in eliminating airborne virus t...
Gespeichert in:
Veröffentlicht in: | Antimicrobial stewardship & healthcare epidemiology : ASHE 2022-07, Vol.2 (S1), p.s85-s85 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background:
High-efficiency particulate air (HEPA) filters are currently recommended when using recirculated air to eliminate the risk of pathogen transmission such as SARS-CoV-2 from one patient care area to the next. We tested the efficacy of lower-grade air filters in eliminating airborne virus transmission.
Methods:
We conducted an experiment in 2 adjacent exam rooms in an unoccupied hospital emergency unit. The HVAC system contained a 15,000-cubic-feet-per-minute rooftop air handler. All outside air and exhaust dampers were closed during the trial (full air recirculation). We conducted experiments in 3 tests arms with varying grades of MERV filters (AAF Flanders, Louisville, KY): (1) control without filters, (2) MERV8+14 filters, and (3) MERV8+16 filters. We repeated 20-minute virus challenge runs 3 times per test arm. Live attenuated influenza vaccine (2 mL LAIV, FluMist Quadrivalent 2020/21, AstraZeneca, Wilmington, DE), was aerosolized into the HVAC system via a commercial nebulizer. Air was sampled using 3 six-stage Andersen air samplers placed in the center of the adjacent room. Environmental particle counts were collected using a particle counter (PEC-PCO-1, PCE Americas).
Results:
Concentrations of viral RNA were determined by qPCR, and viral concentrations (vg/mL) in each stage of each arm were compared directly. Pairwise comparisons of the virus and particle burdens across each stage of each test arm were made using a general linear model. LAIV was detected in the control arm at a virus burden of 2,277 vg/mL, indicating a >6.5 log reduction of the virus released in the HVAC system (8.8×109 total vg). In the second arm, the MERV8+MERV14 filters demonstrated in a 13-fold decrease in viral burden compared to the control arm (mean virus burden: 169 vg/mL, p Our study demonstrates that viral containing particles can be transported via a hospital HVAC system from one patient room to the next. Considering the decrease in detectable virus within the HVAC system, the combination of MERV8+MERV16 filters reduced the virus burden reaching an adjacent room to levels well below the human infectious dosages for influenza and other highly infective viruses.
Conclusions:
Our findings indicate that MERV8+MERV16 filters provide protection against virus transmission through HVAC systems and are a cost-conscious alternative to HEPA filters.
Funding:
None
Disclosures:
None |
---|---|
ISSN: | 2732-494X 2732-494X |
DOI: | 10.1017/ash.2022.217 |