Water-organizing motif continuity is critical for potent ice nucleation protein activity

Bacterial ice nucleation proteins (INPs) can cause frost damage to plants by nucleating ice formation at high sub-zero temperatures. Modeling of Pseudomonas borealis INP by AlphaFold suggests that the central domain of 65 tandem sixteen-residue repeats forms a beta-solenoid with arrays of outward-po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-08, Vol.13 (1), p.5019-5019, Article 5019
Hauptverfasser: Forbes, Jordan, Bissoyi, Akalabya, Eickhoff, Lukas, Reicher, Naama, Hansen, Thomas, Bon, Christopher G., Walker, Virginia K., Koop, Thomas, Rudich, Yinon, Braslavsky, Ido, Davies, Peter L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bacterial ice nucleation proteins (INPs) can cause frost damage to plants by nucleating ice formation at high sub-zero temperatures. Modeling of Pseudomonas borealis INP by AlphaFold suggests that the central domain of 65 tandem sixteen-residue repeats forms a beta-solenoid with arrays of outward-pointing threonines and tyrosines, which may organize water molecules into an ice-like pattern. Here we report that mutating some of these residues in a central segment of P. borealis INP, expressed in Escherichia coli , decreases ice nucleation activity more than the section’s deletion. Insertion of a bulky domain has the same effect, indicating that the continuity of the water-organizing repeats is critical for optimal activity. The ~10 C-terminal coils differ from the other 55 coils in being more basic and lacking water-organizing motifs; deletion of this region eliminates INP activity. We show through sequence modifications how arrays of conserved motifs form the large ice-nucleating surface required for potency. Ice nucleation proteins have the same tandemly arrayed water-organizing motifs seen in some antifreeze proteins, but on a larger scale. The authors show that mutation, interruption, and truncation of these arrays reduce ice nucleation activity indicating that the two protein types share a common mechanism.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-32469-9