On quantum methods for machine learning problems part I: Quantum tools

This is a review of quantum methods for machine learning problems that consists of two parts. The first part, "quantum tools", presents the fundamentals of qubits, quantum registers, and quantum states, introduces important quantum tools based on known quantum search algorithms and SWAP-te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Big Data Mining and Analytics 2020-03, Vol.3 (1), p.41-55
Hauptverfasser: Ablayev, Farid, Ablayev, Marat, Huang, Joshua Zhexue, Khadiev, Kamil, Salikhova, Nailya, Wu, Dingming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This is a review of quantum methods for machine learning problems that consists of two parts. The first part, "quantum tools", presents the fundamentals of qubits, quantum registers, and quantum states, introduces important quantum tools based on known quantum search algorithms and SWAP-test, and discusses the basic quantum procedures used for quantum search methods. The second part, "quantum classification algorithms", introduces several classification problems that can be accelerated by using quantum subroutines and discusses the quantum methods used for classification.
ISSN:2096-0654
2097-406X
DOI:10.26599/BDMA.2019.9020016