Step-Indexed Relational Reasoning for Countable Nondeterminism
Programming languages with countable nondeterministic choice are computationally interesting since countable nondeterminism arises when modeling fairness for concurrent systems. Because countable choice introduces non-continuous behaviour, it is well-known that developing semantic models for program...
Gespeichert in:
Veröffentlicht in: | Logical methods in computer science 2013-10, Vol.9, Issue 4 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Programming languages with countable nondeterministic choice are
computationally interesting since countable nondeterminism arises when modeling
fairness for concurrent systems. Because countable choice introduces
non-continuous behaviour, it is well-known that developing semantic models for
programming languages with countable nondeterminism is challenging. We present
a step-indexed logical relations model of a higher-order functional programming
language with countable nondeterminism and demonstrate how it can be used to
reason about contextually defined may- and must-equivalence. In earlier
step-indexed models, the indices have been drawn from {\omega}. Here the
step-indexed relations for must-equivalence are indexed over an ordinal greater
than {\omega}. |
---|---|
ISSN: | 1860-5974 1860-5974 |
DOI: | 10.2168/LMCS-9(4:4)2013 |