Extended Prudnikov sum

A Prudnikov sum is extended to derive the finite sum of the Hurwitz-Lerch Zeta function in terms of the Hurwitz-Lerch Zeta function. This formula is then used to evaluate a number trigonometric sums and products in terms of other trigonometric functions. These sums and products are taken over positi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS mathematics 2022-01, Vol.7 (10), p.18576-18586
Hauptverfasser: Reynolds, Robert, Stauffer, Allan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A Prudnikov sum is extended to derive the finite sum of the Hurwitz-Lerch Zeta function in terms of the Hurwitz-Lerch Zeta function. This formula is then used to evaluate a number trigonometric sums and products in terms of other trigonometric functions. These sums and products are taken over positive integers which can be simplified in certain circumstances. The results obtained include generalizations of linear combinations of the Hurwitz-Lerch Zeta functions and involving powers of 2 evaluated in terms of sums of Hurwitz-Lerch Zeta functions. Some of these derivations are in the form of a new recurrence identity and finite products of trigonometric functions.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.20221021