Effective Cooling System for Solar Photovoltaic Cells Using NEPCM Impingement Jets
Attention to photovoltaic (PV) cells to convert solar irradiation into electricity is significantly growing for domestic usage and large-scale projects such as solar farms. However, PV efficiency decreases on hot days. This paper proposes an effective cooling technique consisting of a 2% nano encaps...
Gespeichert in:
Veröffentlicht in: | Thermo 2022-12, Vol.2 (4), p.383-393 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Attention to photovoltaic (PV) cells to convert solar irradiation into electricity is significantly growing for domestic usage and large-scale projects such as solar farms. However, PV efficiency decreases on hot days. This paper proposes an effective cooling technique consisting of a 2% nano encapsulated phase change material (NEPCM) slurry and impinging jets (IJs) in a PV system. The impact of five influencing parameters on PV efficiency is studied using a multi-phase volume of fluid (VOF) model encompassing the effects of solar irradiation, latent heat, mass flow rate, number of nozzles, and jet-to-surface distance. The maximum efficiency of 15.82% is achieved under irradiation of 600 W/m2. The latent heat shows a slight improvement at the low particle concentration. Increasing the mass flow rate to 0.12 kg/s enhances the PV output power by 17.32%. While the PV performance is shown to be improved over the increment of the number of nozzles, the jet-to-surface spacing of 5.1 mm records a remarkable PV surface temperature reduction to 33.8 °C, which is the ideal operating temperature for the PV panel. |
---|---|
ISSN: | 2673-7264 2673-7264 |
DOI: | 10.3390/thermo2040026 |