YOLO-DSD: A YOLO-Based Detector Optimized for Better Balance between Accuracy, Deployability and Inference Time in Optical Remote Sensing Object Detection

Many deep learning (DL)-based detectors have been developed for optical remote sensing object detection in recent years. However, most of the recent detectors are developed toward the pursuit of a higher accuracy, but little toward a balance between accuracy, deployability and inference time, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2022-08, Vol.12 (15), p.7622
Hauptverfasser: Chen, Hengxu, Jin, Hong, Lv, Shengping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many deep learning (DL)-based detectors have been developed for optical remote sensing object detection in recent years. However, most of the recent detectors are developed toward the pursuit of a higher accuracy, but little toward a balance between accuracy, deployability and inference time, which hinders the practical application for these detectors, especially in embedded devices. In order to achieve a higher detection accuracy and reduce the computational consumption and inference time simultaneously, a novel convolutional network named YOLO-DSD was developed based on YOLOv4. Firstly, a new feature extraction module, a dense residual (DenseRes) block, was proposed in a backbone network by utilizing a series-connected residual structure with the same topology for improving feature extraction while reducing the computational consumption and inference time. Secondly, convolution layer–batch normalization layer–leaky ReLu (CBL) ×5 modules in the neck, named S-CBL×5, were improved with a short-cut connection in order to mitigate feature loss. Finally, a low-cost novel attention mechanism called a dual channel attention (DCA) block was introduced to each S-CBL×5 for a better representation of features. The experimental results in the DIOR dataset indicate that YOLO-DSD outperforms YOLOv4 by increasing mAP0.5 from 71.3% to 73.0%, with a 23.9% and 29.7% reduction in Params and Flops, respectively, but a 50.2% improvement in FPS. In the RSOD dataset, the mAP0.5 of YOLO-DSD is increased from 90.0~94.0% to 92.6~95.5% under different input sizes. Compared with the SOTA detectors, YOLO-DSD achieves a better balance between the accuracy, deployability and inference time.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12157622