Genetic evidence strengthens the bidirectional connection between gut microbiota and periodontitis: insights from a two-sample Mendelian randomization study
Recent research has established the correlation between gut microbiota and periodontitis via oral-gut axis. Intestinal dysbiosis may play a pivotal bridging role in extra-oral inflammatory comorbidities caused by periodontitis. However, it is unclear whether the link is merely correlative or orchest...
Gespeichert in:
Veröffentlicht in: | Journal of translational medicine 2023-09, Vol.21 (1), p.674-11, Article 674 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent research has established the correlation between gut microbiota and periodontitis via oral-gut axis. Intestinal dysbiosis may play a pivotal bridging role in extra-oral inflammatory comorbidities caused by periodontitis. However, it is unclear whether the link is merely correlative or orchestrated by causative mechanistic interactions. This two-sample Mendelian randomization (MR) study was performed to evaluate the potential bidirectional causal relationships between gut microbiota and periodontitis.
A two-sample MR analysis was performed using summary statistics from genome-wide association studies (GWAS) for gut microbiota (n = 18,340) and periodontitis (cases = 12,251; controls = 22,845). The inverse-variance weighted (IVW) method was used for the primary analysis, and we employed sensitivity analyses to assess the robustness of the main results. The PhenoScanner database was then searched for pleiotropy SNPs associated with potential confounders. In order to identify the possibly influential SNPs, we further conducted the leave-one-out analysis. Finally, a reverse MR analysis was performed to evaluate the possibility of links between periodontitis and genetically predicted gut microbiota alternation.
2,699 single nucleotide polymorphisms (SNPs) associated with 196 microbiota genera were selected as instrumental variables (IVs). IVW method suggested that order Enterobacteriales (OR: 1.35, 95% CI 1.10-1.66), family Bacteroidales S24.7group (OR: 1.22, 95% CI 1.05-1.41), genus Lachnospiraceae UCG008 (OR: 1.16, 95% CI 1.03-1.31), genus Prevotella 7 (OR: 1.11, 95% CI 1.01-1.23), and order Pasteurellales (OR: 1.12, 95% CI 1.00-1.26) may be associated with a higher risk of periodontitis, while genus Ruminiclostridium 6 may be linked to a lower risk (OR: 0.82, 95% CI 0.70-0.95). The sensitivity and heterogeneity analyses yielded no indication of horizontal pleiotropy or heterogeneity. Only the association between order Enterobacteriales and the likelihood of periodontitis remained consistent across all alternative MR approaches. In the reverse MR analysis, four microbiota genera were genetically predicted to be down-regulated in periodontitis, whereas two were predicted to be up-regulated.
The present MR analysis demonstrated the potential bidirectional causal relationships between gut microbiota and periodontitis. Our research provided fresh insights for the prevention and management of periodontitis. Future research is required to support the finding o |
---|---|
ISSN: | 1479-5876 1479-5876 |
DOI: | 10.1186/s12967-023-04559-9 |