Qualitative Behavior of an Exponential Symmetric Difference Equation System

We examine the unboundedness, persistence, boundedness, uniqueness, and existence of non-negative equilibrium of an exponential symmetric difference equations system: Ωn+1=α1+β1Ωn+γ1Ωn−1e−(Ωn+ϖn), ϖn+1=α2+β2ϖn+γ2ϖn−1e−(Ωn+ϖn),n=0,1,⋯, whereby initial values Ω−1,ϖ−1,Ω0,ϖ0 and parameters α1,α2 are non...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2022-12, Vol.14 (12), p.2474
Hauptverfasser: Ibrahim, Tarek F., Refaei, Somayah, Khaliq, Abdul, El-Moneam, Mohamed Abd, Younis, Bakri A., Osman, Waleed M., Al-Sinan, Bushra R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We examine the unboundedness, persistence, boundedness, uniqueness, and existence of non-negative equilibrium of an exponential symmetric difference equations system: Ωn+1=α1+β1Ωn+γ1Ωn−1e−(Ωn+ϖn), ϖn+1=α2+β2ϖn+γ2ϖn−1e−(Ωn+ϖn),n=0,1,⋯, whereby initial values Ω−1,ϖ−1,Ω0,ϖ0 and parameters α1,α2 are non-negative real numbers and β1,β2∈(0,1) and γ1,γ2≤0. We will discuss asymptotic global and local stability and the convergence rate of this system. Ultimately, to check our results, we set out some numerical explanations.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym14122474