Constructing sulfur and oxygen super-coordinated main-group electrocatalysts for selective and cumulative H2O2 production

Direct electrosynthesis of hydrogen peroxide (H 2 O 2 ) via the two-electron oxygen reduction reaction presents a burgeoning alternative to the conventional energy-intensive anthraquinone process for on-site applications. Nevertheless, its adoption is currently hindered by inferior H 2 O 2 selectivi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-01, Vol.15 (1), p.193-193, Article 193
Hauptverfasser: Zhou, Xiao, Min, Yuan, Zhao, Changming, Chen, Cai, Ke, Ming-Kun, Xu, Shi-Lin, Chen, Jie-Jie, Wu, Yuen, Yu, Han-Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Direct electrosynthesis of hydrogen peroxide (H 2 O 2 ) via the two-electron oxygen reduction reaction presents a burgeoning alternative to the conventional energy-intensive anthraquinone process for on-site applications. Nevertheless, its adoption is currently hindered by inferior H 2 O 2 selectivity and diminished H 2 O 2 yield induced by consecutive H 2 O 2 reduction or Fenton reactions. Herein, guided by theoretical calculations, we endeavor to overcome this challenge by activating a main-group Pb single-atom catalyst via a local micro-environment engineering strategy employing a sulfur and oxygen super-coordinated structure. The main-group catalyst, synthesized using a carbon dot-assisted pyrolysis technique, displays an industrial current density reaching 400 mA cm −2 and elevated accumulated H 2 O 2 concentrations (1358 mM) with remarkable Faradaic efficiencies. Both experimental results and theoretical simulations elucidate that S and O super-coordination directs a fraction of electrons from the main-group Pb sites to the coordinated oxygen atoms, consequently optimizing the *OOH binding energy and augmenting the 2e − oxygen reduction activity. This work unveils novel avenues for mitigating the production-depletion challenge in H 2 O 2 electrosynthesis through the rational design of main-group catalysts. H 2 O 2 electrosynthesis via the 2e- oxygen reduction reaction suffers from reduced yield due to H 2 O 2 decomposition reactions. Here, the authors report main-group Pb catalyst coordinated with S and O to address the production-depletion challenge in H 2 O 2 production with industrial current densities.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-44585-1