Designing observables for measurements with deep learning

Many analyses in particle and nuclear physics use simulations to infer fundamental, effective, or phenomenological parameters of the underlying physics models. When the inference is performed with unfolded cross sections, the observables are designed using physics intuition and heuristics. We propos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. C, Particles and fields Particles and fields, 2024-08, Vol.84 (8), p.776-14, Article 776
Hauptverfasser: Long, Owen, Nachman, Benjamin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many analyses in particle and nuclear physics use simulations to infer fundamental, effective, or phenomenological parameters of the underlying physics models. When the inference is performed with unfolded cross sections, the observables are designed using physics intuition and heuristics. We propose to design targeted observables with machine learning. Unfolded, differential cross sections in a neural network output contain the most information about parameters of interest and can be well-measured by construction. The networks are trained using a custom loss function that rewards outputs that are sensitive to the parameter(s) of interest while simultaneously penalizing outputs that are different between particle-level and detector-level (to minimize detector distortions). We demonstrate this idea in simulation using two physics models for inclusive measurements in deep inelastic scattering. We find that the new approach is more sensitive than classical observables at distinguishing the two models and also has a reduced unfolding uncertainty due to the reduced detector distortions.
ISSN:1434-6052
1434-6044
1434-6052
DOI:10.1140/epjc/s10052-024-13135-4