Accuracy of generative deep learning model for macular anatomy prediction from optical coherence tomography images in macular hole surgery

This study aims to propose a generative deep learning model (GDLM) based on a variational autoencoder that predicts macular optical coherence tomography (OCT) images following full-thickness macular hole (FTMH) surgery and evaluate its clinical accuracy. Preoperative and 6-month postoperative swept-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-03, Vol.14 (1), p.6913-6913, Article 6913
Hauptverfasser: Kwon, Han Jo, Heo, Jun, Park, Su Hwan, Park, Sung Who, Byon, Iksoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aims to propose a generative deep learning model (GDLM) based on a variational autoencoder that predicts macular optical coherence tomography (OCT) images following full-thickness macular hole (FTMH) surgery and evaluate its clinical accuracy. Preoperative and 6-month postoperative swept-source OCT data were collected from 150 patients with successfully closed FTMH using 6 × 6 mm 2 macular volume scan datasets. Randomly selected and augmented 120,000 training and 5000 validation pairs of OCT images were used to train the GDLM. We assessed the accuracy and F1 score of concordance for neurosensory retinal areas, performed Bland–Altman analysis of foveolar height (FH) and mean foveal thickness (MFT), and predicted postoperative external limiting membrane (ELM) and ellipsoid zone (EZ) restoration accuracy between artificial intelligence (AI)-OCT and ground truth (GT)-OCT images. Accuracy and F1 scores were 94.7% and 0.891, respectively. Average FH (228.2 vs. 233.4 μm, P  = 0.587) and MFT (271.4 vs. 273.3 μm, P  = 0.819) were similar between AI- and GT-OCT images, within 30.0% differences of 95% limits of agreement. ELM and EZ recovery prediction accuracy was 88.0% and 92.0%, respectively. The proposed GDLM accurately predicted macular OCT images following FTMH surgery, aiding patient and surgeon understanding of postoperative macular features.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-57562-5