Stabilization of active matter by flow-vortex lattices and defect ordering
Active systems, from bacterial suspensions to cellular monolayers, are continuously driven out of equilibrium by local injection of energy from their constituent elements and exhibit turbulent-like and chaotic patterns. Here we demonstrate both theoretically and through numerical simulations, that t...
Gespeichert in:
Veröffentlicht in: | Nature communications 2016-02, Vol.7 (1), p.10557-10557, Article 10557 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Active systems, from bacterial suspensions to cellular monolayers, are continuously driven out of equilibrium by local injection of energy from their constituent elements and exhibit turbulent-like and chaotic patterns. Here we demonstrate both theoretically and through numerical simulations, that the crossover between wet active systems, whose behaviour is dominated by hydrodynamics, and dry active matter where any flow is screened, can be achieved by using friction as a control parameter. Moreover, we discover unexpected vortex ordering at this wet–dry crossover. We show that the self organization of vortices into lattices is accompanied by the spatial ordering of topological defects leading to active crystal-like structures. The emergence of vortex lattices, which leads to the positional ordering of topological defects, suggests potential applications in the design and control of active materials.
Active matter can be described as either wet or dry, depending on whether hydrodynamics or frictional damping dominates the interactions. Here, the authors show that an increase in friction can stabilise the chaotic flow observed in wet active systems to give an ordered lattice of topological defects. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms10557 |