In Silico Exploration of Potential Natural Inhibitors against SARS-Cov-2 nsp10

In continuation of our previous effort, different in silico selection methods were applied to 310 naturally isolated metabolites that exhibited antiviral potentialities before. The applied selection methods aimed to pick the most relevant inhibitor of SARS-CoV-2 nsp10. At first, a structural similar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2021-10, Vol.26 (20), p.6151
Hauptverfasser: Eissa, Ibrahim H., Khalifa, Mohamed M., Elkaeed, Eslam B., Hafez, Elsayed E., Alsfouk, Aisha A., Metwaly, Ahmed M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In continuation of our previous effort, different in silico selection methods were applied to 310 naturally isolated metabolites that exhibited antiviral potentialities before. The applied selection methods aimed to pick the most relevant inhibitor of SARS-CoV-2 nsp10. At first, a structural similarity study against the co-crystallized ligand, S-Adenosyl Methionine (SAM), of SARS-CoV-2 nonstructural protein (nsp10) (PDB ID: 6W4H) was carried out. The similarity analysis culled 30 candidates. Secondly, a fingerprint study against SAM preferred compounds 44, 48, 85, 102, 105, 182, 220, 221, 282, 284, 285, 301, and 302. The docking studies picked 48, 182, 220, 221, and 284. While the ADMET analysis expected the likeness of the five candidates to be drugs, the toxicity study preferred compounds 48 and 182. Finally, a density-functional theory (DFT) study suggested vidarabine (182) to be the most relevant SARS-Cov-2 nsp10 inhibitor.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules26206151