Synthesis, properties, and material hybridization of bare aromatic polymers enabled by dendrimer support
Aromatic polymers are the first-choice platform for current organic materials due to their distinct optical, electronic, and mechanical properties as well as their biocompatibility. However, bare aromatic polymer backbones tend to strongly aggregate, rendering them essentially insoluble in organic s...
Gespeichert in:
Veröffentlicht in: | Nature communications 2022-09, Vol.13 (1), p.5358-5358, Article 5358 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aromatic polymers are the first-choice platform for current organic materials due to their distinct optical, electronic, and mechanical properties as well as their biocompatibility. However, bare aromatic polymer backbones tend to strongly aggregate, rendering them essentially insoluble in organic solvent. While the typical solution is to install many solubilizing substituents on the backbones, this often provokes undesired property changes. Herein, we report the synthesis of bare aromatic polymers enabled by a dendrimer support. An initiator arene containing a diterpenoid-based dendrimer undergoes Pd-catalyzed polymerization with monomers bearing no solubilizing substituents to furnish bare aromatic polymers such as polythiophenes and poly(
para
-phenylene)s. The high solubility of dendrimer-ligated polymers allows not only the unveiling of the properties of unsubstituted π-conjugated backbone, but also mild release of dendrimer-free aromatic polymers and even transfer of aromatic polymers to other materials, such as silica gel and protein, which may accelerate the creation of hybrid materials nowadays challenging to access.
Unsubstituted aromatic polymers are materials with multiple potential applications, but their preparation remains challenging. Here, the authors report a dendrimer-enabled synthesis of soluble bare aromatic polymers and explore their properties; these compounds can be further transformed into other materials. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-022-33100-7 |