Integral transforms of an extended generalized multi-index Bessel function
In this paper, we discuss the extended generalized multi-index Bessel function by using the extended beta type function. Then we investigate its several properties including integral representation, derivatives, beta transform, Laplace transform, Mellin transforms, and some relations of extension of...
Gespeichert in:
Veröffentlicht in: | AIMS Mathematics 2020-01, Vol.5 (6), p.7531-7546 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we discuss the extended generalized multi-index Bessel function by using the extended beta type function. Then we investigate its several properties including integral representation, derivatives, beta transform, Laplace transform, Mellin transforms, and some relations of extension of extended generalized multi-index Bessel function ([E.sup.1]GMBF) with the Laguerre polynomial and Whittaker functions. Further, we also discuss the composition of the generalized fractional integral operator having Appell function as a kernel with the extension of extended generalized multi-index Bessel function and establish these results in terms of Wright functions. Keywords: extended multi-index Bessel function; fractional integrals and derivatives; Appell function; extended beta transform Mathematics Subject Classification: 33C10, 33B20, 33C65, 11S80 1 |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2020482 |