An overview of preparation and characterization of solid binary system and its application on transdermal film with variation of plasticizers

Abstract Chemotherapy induced nausea and vomiting (CINV) and post-operative nausea and vomiting (PONV) is a problem, often occurs in patient. Inspite of high bioavailability, the demerits such as: hepatic first pass metabolism and invasive nature of oral and parenteral dosage forms can be avoided wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brazilian Journal of Pharmaceutical Sciences 2022-01, Vol.58
Hauptverfasser: Kahali, Nancy, Khanam, Jasmina, Chatterjee, Himadrija
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Chemotherapy induced nausea and vomiting (CINV) and post-operative nausea and vomiting (PONV) is a problem, often occurs in patient. Inspite of high bioavailability, the demerits such as: hepatic first pass metabolism and invasive nature of oral and parenteral dosage forms can be avoided with anti-emetic therapy of transdermal device. The major objective of the present study is to modify the hydrochloride (HCl) form of Ondansetron (OND) to the base form followed by improvement of solubility and permeability of OND by employing solid dispersion (SD) loaded patches. Preformulation study, as observed, begins with an approach to enthuse solubility of OND by SD technique choosing different carriers. The choice of carriers was rationalized by phase solubility study. Several combinations of transdermal films were prepared with pure drug, carriers and SDs with plasticizer Ka values of OND-HPβCD binary system were found lower (54.43 to 187.57 M-1) than that of OND-PVP K-30 binary system (1156.77 to 12203.6 M-1). The drug content of SDs and patches were found satisfactory. Better permeation rate (236.48±3.66 µg/3.935 cm2) with promising flux enhancement (8.30 fold) was found with DBP loaded SD patch (P6*). Hence, enhancement of solubility and permeability of P6* ensures that it can successfully enhance the bioavailability.
ISSN:2175-9790
2175-9790
DOI:10.1590/s2175-97902022e191123