Micropatterned Nanofiber Scaffolds of Salmon Gelatin, Chitosan, and Poly(vinyl alcohol) for Muscle Tissue Engineering

The development of scaffolds that mimic the aligned fibrous texture of the extracellular matrix has become an important requirement in muscle tissue engineering. Electrospinning is a widely used technique to fabricate biomimetic scaffolds. Therefore, a biopolymer blend composed of salmon gelatin (SG...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2023-12, Vol.8 (50), p.47883-47896
Hauptverfasser: Taborda, María I., Catalan, Karina N., Orellana, Nicole, Bezjak, Dragica, Enrione, Javier, Acevedo, Cristian A., Corrales, Tomas P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of scaffolds that mimic the aligned fibrous texture of the extracellular matrix has become an important requirement in muscle tissue engineering. Electrospinning is a widely used technique to fabricate biomimetic scaffolds. Therefore, a biopolymer blend composed of salmon gelatin (SG), chitosan (Ch), and poly­(vinyl alcohol) (PVA) was developed by electrospinning onto a micropatterned (MP) collector, resulting in a biomimetic scaffold for seeding muscle cells. Rheology and surface tension studies were performed to determine the optimum solution concentration and viscosity for electrospinning. The scaffold microstructure was analyzed using SEM to determine the nanofiber’s diameter and orientation. Blends of SG/Ch/PVA exhibited better electrospinnability and handling properties than pure PVA. The resulting scaffolds consist of a porous surface (∼46%), composed of a random fiber distribution, for a flat collector and scaffolds with regions of aligned nanofibers for the MP collector. The nanofiber diameters are 141 ± 2 and 151 ± 2 nm for the flat and MP collector, respectively. In vitro studies showed that myoblasts cultured on scaffold SG/Ch/PVA presented a high rate of cell growth. Furthermore, the aligned nanofibers on the SG/Ch/PVA scaffold provide a suitable platform for myoblast alignment.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.3c06436