Improved calorimetric particle identification in NA62 using machine learning techniques
A bstract Measurement of the ultra-rare K + → π + ν ν ¯ decay at the NA62 experiment at CERN requires high-performance particle identification to distinguish muons from pions. Calorimetric identification currently in use, based on a boosted decision tree algorithm, achieves a muon misidentification...
Gespeichert in:
Veröffentlicht in: | JHEP 2023-11, Vol.2023 (11), p.138-15, Article 138 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A
bstract
Measurement of the ultra-rare
K
+
→
π
+
ν
ν
¯
decay at the NA62 experiment at CERN requires high-performance particle identification to distinguish muons from pions. Calorimetric identification currently in use, based on a boosted decision tree algorithm, achieves a muon misidentification probability of 1
.
2 × 10
−
5
for a pion identification efficiency of 75% in the momentum range of 15–40 GeV/
c
. In this work, calorimetric identification performance is improved by developing an algorithm based on a convolutional neural network classifier augmented by a filter. Muon misidentification probability is reduced by a factor of six with respect to the current value for a fixed pion-identification efficiency of 75%. Alternatively, pion identification efficiency is improved from 72% to 91% for a fixed muon misidentification probability of 10
−
5
. |
---|---|
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP11(2023)138 |