The Comet Assay in Drosophila: A Tool to Study Interactions between DNA Repair Systems in DNA Damage Responses In Vivo and Ex Vivo

The comet assay in Drosophila has been used in the last few years to study DNA damage responses (DDR) in different repair-mutant strains and to compare them to analyze DNA repair. We have used this approach to study interactions between DNA repair pathways in vivo. Additionally, we have implemented...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cells (Basel, Switzerland) Switzerland), 2023-07, Vol.12 (15), p.1979
Hauptverfasser: Rodríguez, Rubén, Gaivão, Isabel, Aguado, Leticia, Espina, Marta, García, Jorge, Martínez-Camblor, Pablo, Sierra, L María
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The comet assay in Drosophila has been used in the last few years to study DNA damage responses (DDR) in different repair-mutant strains and to compare them to analyze DNA repair. We have used this approach to study interactions between DNA repair pathways in vivo. Additionally, we have implemented an ex vivo comet assay, in which nucleoids from treated and untreated cells were incubated ex vivo with cell-free protein extracts from individuals with distinct repair capacities. Four strains were used: wild-type OregonK ( ), nucleotide excision repair mutant , dmPolQ protein mutant , and the double mutant . Methyl methanesulfonate (MMS) was used as a genotoxic agent. Both approaches were performed with neuroblasts from third-instar larvae; they detected the effects of the NER and dmPolQ pathways on the DDR to MMS and that they act additively in this response. Additionally, the ex vivo approach quantified that , , and the double mutant strains presented, respectively, 21.5%, 52.9%, and 14.8% of strain activity over MMS-induced damage. Considering the homology between mammals and Drosophila in repair pathways, the detected additive effect might be extrapolated even to humans, demonstrating that Drosophila might be an excellent model to study interactions between repair pathways.
ISSN:2073-4409
2073-4409
DOI:10.3390/cells12151979