DISCOVER-EEG: an open, fully automated EEG pipeline for biomarker discovery in clinical neuroscience

Biomarker discovery in neurological and psychiatric disorders critically depends on reproducible and transparent methods applied to large-scale datasets. Electroencephalography (EEG) is a promising tool for identifying biomarkers. However, recording, preprocessing, and analysis of EEG data is time-c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific data 2023-09, Vol.10 (1), p.613-14, Article 613
Hauptverfasser: Gil Ávila, Cristina, Bott, Felix S., Tiemann, Laura, Hohn, Vanessa D., May, Elisabeth S., Nickel, Moritz M., Zebhauser, Paul Theo, Gross, Joachim, Ploner, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biomarker discovery in neurological and psychiatric disorders critically depends on reproducible and transparent methods applied to large-scale datasets. Electroencephalography (EEG) is a promising tool for identifying biomarkers. However, recording, preprocessing, and analysis of EEG data is time-consuming and researcher-dependent. Therefore, we developed DISCOVER-EEG, an open and fully automated pipeline that enables easy and fast preprocessing, analysis, and visualization of resting state EEG data. Data in the Brain Imaging Data Structure (BIDS) standard are automatically preprocessed, and physiologically meaningful features of brain function (including oscillatory power, connectivity, and network characteristics) are extracted and visualized using two open-source and widely used Matlab toolboxes (EEGLAB and FieldTrip). We tested the pipeline in two large, openly available datasets containing EEG recordings of healthy participants and patients with a psychiatric condition. Additionally, we performed an exploratory analysis that could inspire the development of biomarkers for healthy aging. Thus, the DISCOVER-EEG pipeline facilitates the aggregation, reuse, and analysis of large EEG datasets, promoting open and reproducible research on brain function.
ISSN:2052-4463
2052-4463
DOI:10.1038/s41597-023-02525-0