Sub3DNet1.0: a deep-learning model for regional-scale 3D subsurface structure mapping

This study introduces an efficient deep-learning model based on convolutional neural networks with joint autoencoder and adversarial structures for 3D subsurface mapping from 2D surface observations. The method was applied to delineate paleovalleys in an Australian desert landscape. The neural netwo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geoscientific Model Development 2021-06, Vol.14 (6), p.3421-3435
Hauptverfasser: Jiang, Zhenjiao, Mallants, Dirk, Gao, Lei, Munday, Tim, Mariethoz, Gregoire, Peeters, Luk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study introduces an efficient deep-learning model based on convolutional neural networks with joint autoencoder and adversarial structures for 3D subsurface mapping from 2D surface observations. The method was applied to delineate paleovalleys in an Australian desert landscape. The neural network was trained on a 6400 km2 domain by using a land surface topography as 2D input and an airborne electromagnetic (AEM)-derived probability map of paleovalley presence as 3D output. The trained neural network has a squared error
ISSN:1991-9603
1991-959X
1991-962X
1991-9603
1991-962X
DOI:10.5194/gmd-14-3421-2021