Separable solutions of Cattaneo-Hristov heat diffusion equation in a line segment: Cauchy and source problems

The behavior of Cattaneo-Hristov heat diffusion moving in a line segment under the influence of specified initial and source temperatures has been investigated. The Fourier method has been applied to determine the eigenfunctions thus allowing reducing the problem to a set of time-fractional ordinary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Alexandria engineering journal 2021-04, Vol.60 (2), p.2347-2353
Hauptverfasser: İskender Eroğlu, Beyza Billur, Avcı, Derya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The behavior of Cattaneo-Hristov heat diffusion moving in a line segment under the influence of specified initial and source temperatures has been investigated. The Fourier method has been applied to determine the eigenfunctions thus allowing reducing the problem to a set of time-fractional ordinary differential equations. Analytical solutions by applying the Laplace transform method have been developed.
ISSN:1110-0168
DOI:10.1016/j.aej.2020.12.018