Separable solutions of Cattaneo-Hristov heat diffusion equation in a line segment: Cauchy and source problems
The behavior of Cattaneo-Hristov heat diffusion moving in a line segment under the influence of specified initial and source temperatures has been investigated. The Fourier method has been applied to determine the eigenfunctions thus allowing reducing the problem to a set of time-fractional ordinary...
Gespeichert in:
Veröffentlicht in: | Alexandria engineering journal 2021-04, Vol.60 (2), p.2347-2353 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The behavior of Cattaneo-Hristov heat diffusion moving in a line segment under the influence of specified initial and source temperatures has been investigated. The Fourier method has been applied to determine the eigenfunctions thus allowing reducing the problem to a set of time-fractional ordinary differential equations. Analytical solutions by applying the Laplace transform method have been developed. |
---|---|
ISSN: | 1110-0168 |
DOI: | 10.1016/j.aej.2020.12.018 |