Polydopamine-Modified Copper Coordination Mesoporous Silica Nanoparticles Loaded with Disulfiram for Synergistic Chemo-Photothermal Therapy
Disulfiram (DSF) degrades to diethyldithiocarbamate (DTC) in vivo and coordinates with copper ions to form CuET, which has higher antitumor activity. In this study, DSF@CuMSN-PDA nanoparticles were prepared using mesoporous silica with copper ions, DSF as a carrier, and polydopamine (PDA) as a gate...
Gespeichert in:
Veröffentlicht in: | Pharmaceutics 2024-04, Vol.16 (4), p.512 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Disulfiram (DSF) degrades to diethyldithiocarbamate (DTC) in vivo and coordinates with copper ions to form CuET, which has higher antitumor activity. In this study, DSF@CuMSN-PDA nanoparticles were prepared using mesoporous silica with copper ions, DSF as a carrier, and polydopamine (PDA) as a gate system. The nanoparticles selectively released CuET into tumor tissue by taking advantage of the tumor microenvironment, where PDA could be degraded. The release ratio reached 79.17% at pH 5.0, indicating pH-responsive drug release from the nanoparticles. The PDA-gated system provided the nanoparticles with unique photothermal conversion performance and significantly improved antitumor efficiency. In vivo, antitumor experiments showed that the designed DSF@CuMSN-PDA nanoparticles combined with near-infrared light (808 nm, 1 W/cm
) irradiation effectively inhibited tumor growth in HCT116 cells by harnessing the combined potential of chemotherapy and photothermal therapy; a synergistic effect was achieved. Taken together, these results suggest that the designed DSF@CuMSN-PDA construct can be employed as a promising candidate for combined chemo-photothermal therapy. |
---|---|
ISSN: | 1999-4923 1999-4923 |
DOI: | 10.3390/pharmaceutics16040512 |