A Secure and Lightweight Multi-Party Private Intersection-Sum Scheme over a Symmetric Cryptosystem

A private intersection-sum (PIS) scheme considers the private computing problem of how parties jointly compute the sum of associated values in the set intersection. In scenarios such as electronic voting, corporate credit investigation, and ad conversions, private data are held by different parties....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2023-01, Vol.15 (2), p.319
Hauptverfasser: Zhang, Junwei, Kang, Xin, Liu, Yang, Ma, Huawei, Li, Teng, Ma, Zhuo, Gataullin, Sergey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A private intersection-sum (PIS) scheme considers the private computing problem of how parties jointly compute the sum of associated values in the set intersection. In scenarios such as electronic voting, corporate credit investigation, and ad conversions, private data are held by different parties. However, despite two-party PIS being well-developed in many previous works, its extended version, multi-party PIS, has rarely been discussed thus far. This is because, depending on the existing works, directly initiating multiple two-party PIS instances is considered to be a straightforward way to achieve multi-party PIS; however, by using this approach, the intersection-sum results of the two parties and the data only belonging to the two-party intersection will be leaked. Therefore, achieving secure multi-party PIS is still a challenge. In this paper, we propose a secure and lightweight multi-party private intersection-sum scheme called SLMP-PIS. We maintain data privacy based on zero sharing and oblivious pseudorandom functions to compute the multi-party intersection and consider the privacy of associated values using arithmetic sharing and symmetric encryption. The security analysis results show that our protocol is proven to be secure in the standard semi-honest security model. In addition, the experiment results demonstrate that our scheme is efficient and feasible in practice. Specifically, when the number of participants is five, the efficiency can be increased by 22.98%.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym15020319