Locally stable brain states predict suppression of epileptic activity by enhanced cognitive effort

Cognitive effort is known to play a role in healthy brain state organization, but little is known about its effects on pathological brain dynamics. When cortical stimulation is used to map functional brain areas prior to surgery, a common unwanted side effect is the appearance of afterdischarges (AD...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage clinical 2018-01, Vol.18, p.599-607
Hauptverfasser: Muldoon, Sarah F., Costantini, Julia, Webber, W.R.S., Lesser, Ronald, Bassett, Danielle S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cognitive effort is known to play a role in healthy brain state organization, but little is known about its effects on pathological brain dynamics. When cortical stimulation is used to map functional brain areas prior to surgery, a common unwanted side effect is the appearance of afterdischarges (ADs), epileptiform and potentially epileptogenic discharges that can progress to a clinical seizure. It is therefore desirable to suppress this activity. Here, we analyze electrocorticography recordings from 15 patients with epilepsy. We show that a cognitive intervention in the form of asking an arithmetic question can be effective in suppressing ADs, but that its effectiveness is dependent upon the brain state at the time of intervention. By applying novel techniques from network analysis to quantify brain states, we find that the spatial organization of ADs with respect to coherent brain regions relates to the success of the cognitive intervention: if ADs are mainly localized within a single stable brain region, a cognitive intervention is likely to suppress the ADs. These findings show that cognitive effort is a useful tactic to modify unstable pathological activity associated with epilepsy, and suggest that the success of therapeutic interventions to alter activity may depend on an individual's brain state at the time of intervention. •Cognitive intervention in the form of an arithmetic question can sometimes stop epileptic afterdischarges•Brain states are measured through community structure of functional brain networks•Success of intervention depends on spatial relationship between afterdischarge network and brain state•Dynamic community detection is used to assess community stability•If the afterdischarge network is in a strong, stable community, the cognitive intervention likely stops the afterdischarges
ISSN:2213-1582
2213-1582
DOI:10.1016/j.nicl.2018.02.027