Human connectome topology directs cortical traveling waves and shapes frequency gradients
Traveling waves and neural oscillation frequency gradients are pervasive in the human cortex. While the direction of traveling waves has been linked to brain function and dysfunction, the factors that determine this direction remain elusive. We hypothesized that structural connectivity instrength gr...
Gespeichert in:
Veröffentlicht in: | Nature communications 2024-04, Vol.15 (1), p.3570-3570, Article 3570 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Traveling waves and neural oscillation frequency gradients are pervasive in the human cortex. While the direction of traveling waves has been linked to brain function and dysfunction, the factors that determine this direction remain elusive. We hypothesized that structural connectivity instrength gradients — defined as the gradually varying sum of incoming connection strengths across the cortex — could shape both traveling wave direction and frequency gradients. We confirm the presence of instrength gradients in the human connectome across diverse cohorts and parcellations. Using a cortical network model, we demonstrate how these instrength gradients direct traveling waves and shape frequency gradients. Our model fits resting-state MEG functional connectivity best in a regime where instrength-directed traveling waves and frequency gradients emerge. We further show how structural subnetworks of the human connectome generate opposing wave directions and frequency gradients observed in the alpha and beta bands. Our findings suggest that structural connectivity instrength gradients affect both traveling wave direction and frequency gradients.
The factors that determine the direction of traveling waves in the brain are not well understood. Here, the authors show that the sum of incoming structural connection strengths shape both traveling wave direction and frequency gradients. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-024-47860-x |