Structure formation of lime composites with polysaccharide additives
Introduction. The research is aimed at obtaining a lime composition and coating based on it for the restoration of cultural heritage sites. Materials and methods. We used for study slaked lime (fluff) with an activity of 83%. Sunbo PC 1021 (a superplasticizer based on polycarboxylate ether), MasterG...
Gespeichert in:
Veröffentlicht in: | Nanotehnologii v stroitelʹstve 2024-01, Vol.16 (3), p.211-217 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Introduction. The research is aimed at obtaining a lime composition and coating based on it for the restoration of cultural heritage sites. Materials and methods. We used for study slaked lime (fluff) with an activity of 83%. Sunbo PC 1021 (a superplasticizer based on polycarboxylate ether), MasterGlenium 115 and Sika Visc°Crete-226 P were used as plasticizing additives. The cohesive strength of the coatings was determined by the axial tensile strength. Rheological properties were assessed by plastic strength, which was determined using a KP-3 conical plastometer. Results and discussions. It was revealed that the introduction of polysaccharide additives contributes to a sharp increase in plastic strength compared to the control composition. The additive Sika Visc°Crete-226 P has the greatest plasticizing effect. It was revealed that the qualitative mineralogical composition of lime composites is the same. However, analysis of X-ray diffraction patterns indicates an increase in the intensity of CaCO3 reflections, which indicates an increase in the carbonization front. Control samples contain higher amounts of portlandite. A slight increase in the width of the CaCO3 peaks is observed, which indicates the possible introduction of organic molecules into the calcite composition. A change in the parameters of the crystal lattice was established in samples prepared with slaked lime in the presence of polysaccharides. Conclusion. The absence of chemical interaction between lime and polysaccharides has been established. It has been shown that coatings based on lime compositions with the addition of polysaccharides are characterized by higher cohesive strength. A change in the parameters of the crystal lattice was established in samples prepared with slaked lime in the presence of polysaccharides. |
---|---|
ISSN: | 2075-8545 2075-8545 |
DOI: | 10.15828/2075-8545-2024-16-3-211-217 |