A conformal collider for holographic CFTs

A bstract We develop a formalism to study the implications of causality on OPE coefficients in conformal field theories with large central charge and a sparse spectrum of higher spin operators. The formalism has the interpretation of a new conformal collider-type experiment for these class of CFTs a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2018-10, Vol.2018 (10), p.1-50, Article 156
Hauptverfasser: Afkhami-Jeddi, Nima, Kundu, Sandipan, Tajdini, Amirhossein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract We develop a formalism to study the implications of causality on OPE coefficients in conformal field theories with large central charge and a sparse spectrum of higher spin operators. The formalism has the interpretation of a new conformal collider-type experiment for these class of CFTs and hence it has the advantage of requiring knowledge only about CFT three-point functions. This is accomplished by considering the holographic null energy operator which was introduced in [ 1 ] as a generalization of the averaged null energy operator. Analyticity properties of correlators in the Regge limit imply that the holographic null energy operator is a positive operator in a subspace of the total CFT Hilbert space. Utilizing this positivity condition, we derive bounds on three-point functions 〈 TO 1 O 2 〉 of the stress tensor with various operators for CFTs with large central charge and a sparse spectrum. After imposing these constraints, we also find that the operator product expansions of all primary operators in the Regge limit have certain universal properties. All of these results are consistent with the expectation that CFTs in this class, irrespective of their microscopic details, admit universal gravity-like holographic dual descriptions. Furthermore, this connection enables us to constrain various inflationary observables such as the amplitude of chiral gravity waves, non-gaussanity of gravity waves and tensor-to-scalar ratio.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP10(2018)156