Scalar modular bootstrap and zeros of the Riemann zeta function

A bstract Using the technology of harmonic analysis, we derive a crossing equation that acts only on the scalar primary operators of any two-dimensional conformal field theory with U(1) c symmetry. From this crossing equation, we derive bounds on the scalar gap of all such theories. Rather remarkabl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2022-11, Vol.2022 (11), p.143-36, Article 143
Hauptverfasser: Benjamin, Nathan, Chang, Cyuan-Han
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract Using the technology of harmonic analysis, we derive a crossing equation that acts only on the scalar primary operators of any two-dimensional conformal field theory with U(1) c symmetry. From this crossing equation, we derive bounds on the scalar gap of all such theories. Rather remarkably, our crossing equation contains information about all nontrivial zeros of the Riemann zeta function. As a result, we rephrase the Riemann hypothesis purely as a statement about the asymptotic density of scalar operators in certain two-dimensional conformal field theories. We discuss generalizations to theories with only Virasoro symmetry.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP11(2022)143