A Criterion of Heat Transfer Deterioration for Supercritical Organic Fluids Flowing Upward and Its Heat Transfer Correlation

The main objective of this study was to develop the supercritical heat transfer correlation applicable for organic fluids when flowing upward in smooth tubes based on the available experimental data. The organic fluids contain R-22, R-134a, R-245fa and Ethanol and the associated heat transfer charac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2020-02, Vol.13 (4), p.989
Hauptverfasser: Li, Yung-Ming, Liaw, Jane-Sunn, Wang, Chi-Chuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main objective of this study was to develop the supercritical heat transfer correlation applicable for organic fluids when flowing upward in smooth tubes based on the available experimental data. The organic fluids contain R-22, R-134a, R-245fa and Ethanol and the associated heat transfer characteristics were compared with non-organic fluids like water and carbon-dioxide (CO2). It was found that the limit heat flux may result in heat transfer deterioration (HTD) of organic fluid and the corresponding values are much smaller than water or CO2. A new criterion to predict the HTD was developed and this criterion yields the best predictive ability against database. It was found that HTD occurs can be well described by the acceleration parameter evaluated at the wall condition rather than at bulk condition. For estimation of the supercritical heat transfer coefficient (HTC) for organic fluid, the present study proposes a new correlation with a physically based correction factor, which gives satisfactory predictions against the HTC of supercritical organic fluid. The new correlation can offer the smallest average deviation of 0.007 and standard deviation of 0.181 among the existing correlations.
ISSN:1996-1073
1996-1073
DOI:10.3390/en13040989