Three-dimensional flat Landau levels in an inhomogeneous acoustic crystal

When electrons moving in two dimensions (2D) are subjected to a strong uniform magnetic field, they form flat bands called Landau levels (LLs). LLs can also arise from pseudomagnetic fields (PMFs) induced by lattice distortions. In three-dimensional (3D) systems, there has been no experimental demon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-03, Vol.15 (1), p.2174-2174, Article 2174
Hauptverfasser: Cheng, Zheyu, Guan, Yi-Jun, Xue, Haoran, Ge, Yong, Jia, Ding, Long, Yang, Yuan, Shou-Qi, Sun, Hong-Xiang, Chong, Yidong, Zhang, Baile
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When electrons moving in two dimensions (2D) are subjected to a strong uniform magnetic field, they form flat bands called Landau levels (LLs). LLs can also arise from pseudomagnetic fields (PMFs) induced by lattice distortions. In three-dimensional (3D) systems, there has been no experimental demonstration of LLs  as a type of flat band thus far. Here, we report the experimental realization of a flat 3D LL in an acoustic crystal. Starting from a lattice whose bandstructure exhibits a nodal ring, we design an inhomogeneous distortion corresponding to a specific pseudomagnetic vector potential (PVP). This distortion causes the nodal ring states to break up into LLs, including a zeroth LL that is flat along all three directions. These findings suggest the possibility of using nodal ring materials to generate 3D flat bands, allowing access to strong interactions and other attractive physical regimes in 3D. Artificial magnetic fields have been meticulously engineered in a 3D acoustic crystal, facilitating the creation of 3D flat bands through Landau quantization of quasiparticles arising from nodal-ring band degeneracies.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-46517-z