A global dataset of terrestrial evapotranspiration and soil moisture dynamics from 1982 to 2020

Quantifying terrestrial evapotranspiration (ET) and soil moisture dynamics accurately is crucial for understanding the global water cycle and surface energy balance. We present a novel, long-term dataset of global ET and soil moisture derived from the newly developed Simple Terrestrial Hydrosphere m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific data 2024-05, Vol.11 (1), p.445-445, Article 445
Hauptverfasser: Zhang, Kun, Chen, Huiling, Ma, Ning, Shang, Shasha, Wang, Yunquan, Xu, Qinglin, Zhu, Gaofeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantifying terrestrial evapotranspiration (ET) and soil moisture dynamics accurately is crucial for understanding the global water cycle and surface energy balance. We present a novel, long-term dataset of global ET and soil moisture derived from the newly developed Simple Terrestrial Hydrosphere model, version 2 (SiTHv2). This ecohydrological model, driven by multi-source satellite observations and hydrometeorological variables from reanalysis data, provides daily global ET-related estimates (e.g., total ET, plant transpiration, soil evaporation, intercepted evaporation) and three-layer soil moisture dynamics at a 0.1° spatial resolution. Validation with in-situ measurements and comparisons with mainstream global ET and soil moisture products demonstrate robust performance of SiTHv2 in both magnitude and temporal dynamics of ET and soil moisture at multiple scales. The comprehensive water path characterization in the SiTHv2 model makes this seamless dataset particularly valuable for studies requiring synchronized water budget and vegetation response to water constraints. With its long-term coverage and high spatiotemporal resolution, the SiTHv2-derived ET and soil moisture product will be suitable to support analyses related to the hydrologic cycle, drought assessment, and ecosystem health.
ISSN:2052-4463
2052-4463
DOI:10.1038/s41597-024-03271-7