Analytic approach for computation of topological number of integrable vortex on torus

A bstract Detailed structures of vortices on a torus are discovered by performing an analytic method to calculate the vortex number. We focus on analytic vortex solutions to the Chern-Simons-Higgs theory, whose governing equation is the so-called Jackiw-Pi equation. The equation is one of the integr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2024-09, Vol.2024 (9), p.189-25, Article 189
Hauptverfasser: Miyamoto, Kaoru, Nakamula, Atsushi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract Detailed structures of vortices on a torus are discovered by performing an analytic method to calculate the vortex number. We focus on analytic vortex solutions to the Chern-Simons-Higgs theory, whose governing equation is the so-called Jackiw-Pi equation. The equation is one of the integrable vortex equations and is reduced to Liouville’s equation. The requirement of continuity of the Higgs field strongly restricts the characteristics and the fundamental domain of the vortices. Also considered are the decompactification limits of the vortices on a torus, in which “flux loss” phenomena occasionally occur.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP09(2024)189