Exploring the identification of multiple bacteria on stainless steel using multi-scale spectral imaging from microscopic to macroscopic

This work investigates non-contact reflectance spectral imaging techniques, i.e. microscopic Fourier transform infrared (FTIR) imaging, macroscopic visible-near infrared (VNIR), and shortwave infrared (SWIR) spectral imaging, for the identification of bacteria on stainless steel. Spectral images of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2022-09, Vol.12 (1), p.15412-15412, Article 15412
Hauptverfasser: Xu, Jun-Li, Herrero-Langreo, Ana, Lamba, Sakshi, Ferone, Mariateresa, Swanson, Anastasia, Caponigro, Vicky, Scannell, Amalia G. M., Gowen, Aoife A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work investigates non-contact reflectance spectral imaging techniques, i.e. microscopic Fourier transform infrared (FTIR) imaging, macroscopic visible-near infrared (VNIR), and shortwave infrared (SWIR) spectral imaging, for the identification of bacteria on stainless steel. Spectral images of two Gram-positive (GP) bacteria ( Bacillus subtilis (BS) and Lactobacillus plantarum (LP)), and three Gram-negative (GN) bacteria ( Escherichia coli (EC), Cronobacter sakazakii (CS), and Pseudomonas fluorescens (PF)) , were collected from dried suspensions of bacterial cells dropped onto stainless steel surfaces. Through the use of multiple independent biological replicates for model validation and testing, FTIR reflectance spectral imaging was found to provide excellent GP/GN classification accuracy (> 96%), while the fused VNIR-SWIR data yielded classification accuracy exceeding 80% when applied to the independent test sets. However, classification within gram type was far less reliable, with lower accuracies for classification within the GP (
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-19617-3